HW3 Bootcamp: P2 Utterance to Phoneme Mapping FALL 2021

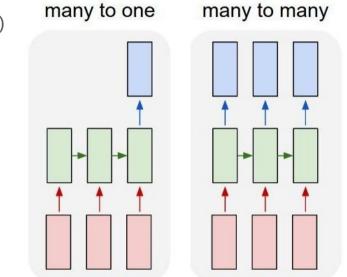
TAs: Ojas Sachin Bhargave, Sheila Mbadi, Xiang Li, Fan Zhou

Data and Task

• Features:

- Same as hw1p2 (array of utterances with 40D timesteps)
- No P2 multiple choice

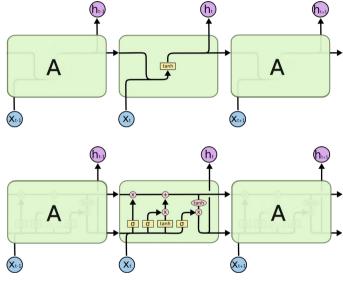
• Labels:


- Order? Alignment?
- $^{\bigcirc}$ List of lists cast to numpy array
- Must generate sequences of phonemes
 - $^{\odot}$ 41 phonemes and 1 blank character
- Loss: CTCLoss
- Metric: mean Levenshtein distance
 - $^{\circ}$ Can import

Data and Task

- Features:
 - Same as hw1p2 (array of utterances with 40D timesteps)
 - No P2 multiple choice

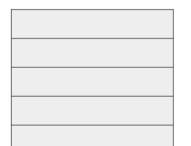
• Labels:

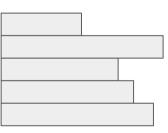

- Order? Alignment?
- List of lists cast to numpy array
- Must generate sequences of phonemes
 - $^{\odot}$ 41 phonemes and 1 blank character
- Loss: CTCLoss
- Metric: mean Levenshtein distance
 - $^{\circ}$ Can import

https://i.stack.imgur.com/b4sus.jpg

Modeling and RNN+Variants

- Can use other types of layers
 - Hint: Convolutional Layers
 - Input shape: (batch, in_channel, length)
- RNN, LSTM, GRU, etc.
 - Capture sequential dependencies
 - Input shape: (length, batch, feature) or (batch, length, feature)
- No attention

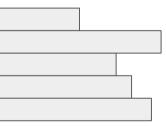



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Batch of Variable Length Inputs: Padding

Equal Length

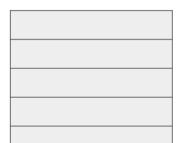
Variable Length


- HW1, HW2: equal length inputs
- HW3: variable length sequences
- Method 1: Pad
 - $^{\circ}$ Inefficient with space
- Method 2: Packing

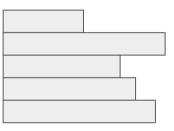
Batch of Variable Length Inputs: Padding

Equal Length

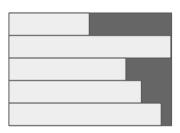
Variable Length



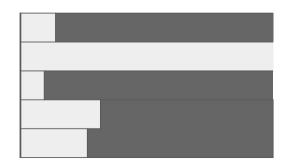
Padded Equal Length


- HW1, HW2: equal length inputs
- HW3: variable length sequences
- Method 1: Pad
 - $^{\bigcirc}$ Inefficient with space
- Method 2: Packing

Batch of Variable Length Inputs: Padding


Equal Length

Variable Length



Padded Equal Length

- HW1, HW2: equal length inputs
- HW3: variable length sequences
- Method 1: Pad
 - $^{\circ}$ Inefficient with space
- Method 2: Packing

Another Problematic Example

Batch of Variable Length Inputs: Packed Sequence

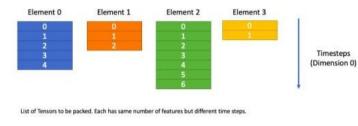
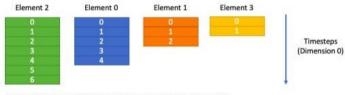



Figure 2: List of tensors we want to pack

Tensors sorted in descending order based on the number of time steps in each sample.

Figure 3: First we sort the list in a descending order based on number of timesteps in each

Batch of Variable Length Inputs: Packed Sequence

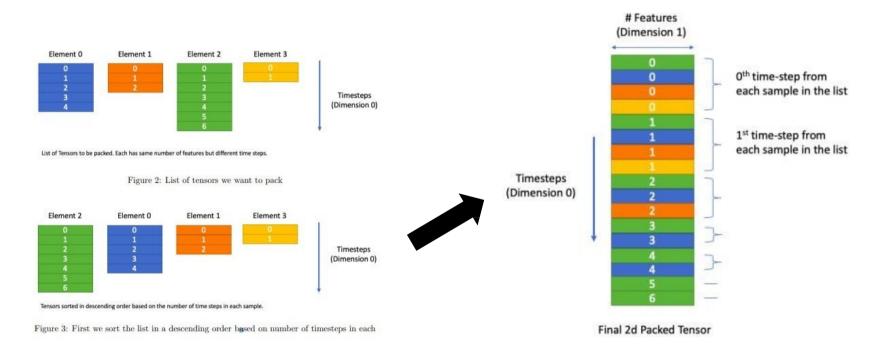
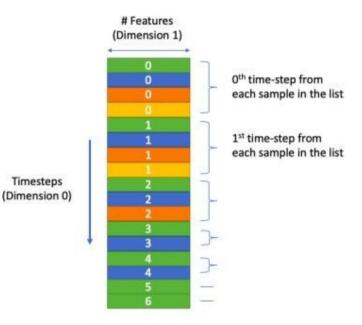


Figure 4: Final Packed 2d Tensor

Reference: Fall 20 HW3P1 Writeup

Packed Sequences

- pad_sequence()
 - $^{\circ}$ Pads to equal length for batching
- pack_padded_sequence()
 - $^{\rm O}$ $\,$ Packs batch of padded sequences
 - Requires sequences + sequence lengths
- X = pad_packed_sequence()
 - $^{\rm O}$ $\,$ Unpacks back to a batch of padded sequences $\,$
 - Outputs sequences + sequence lengths
- Collate Function
 - O Dataloader argument
 - $^{\bigcirc}$ $\,$ Helpful when altering data for batch



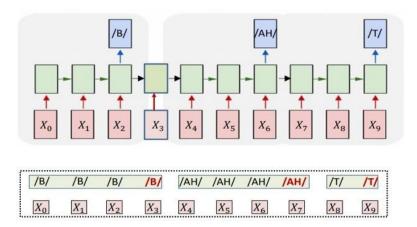


Figure 4: Final Packed 2d Tensor

Output Processing

Output = probability distribution at each timestep

- Order Synchronous, not time synchronous
- Greedy Search
- Beam Search
 - Marginal performance improvement
 - Linked in the writeup
- Feel free to use your own!

Advice

- Watch lecture and recitations
- Read the entire write-up and understand the problem before starting
- Look at the example submission
- Check tensor shapes
 - batch_first=True
- Use what you've learned from previous P2s

Some Helpful References

- PyTorch documentation PyTorch 1.8.0 documentation https://pytorch.org/docs/stable/index.html
- Homework3p2.pdf (cmu.edu) https://deeplearning.cs.cmu.edu/F21/document/homework/HW3/hw3p2_writeup.pdf
- <u>http://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>